753 research outputs found

    Joint Status Certificate

    Get PDF

    Joint Status Certificate

    Get PDF

    Factors affecting relative seed fitness and female frequency in a gynodioecious species, Silene acaulis

    Get PDF
    ABSTRACT Sex-ratio variation is common among gynodioecious species. One argument predicts that when sex is determined by a combination of nuclear and cytoplasmic factors, the frequency of females will be determined by genetic rather than ecological factors. An alternative argument suggests that the relative seed fitness of the female and hermaphroditic morphs will control female frequency. Hence, sex-ratio variation can be influenced by any factor that affects relative seed fitness, including ecological factors such as variation in pollination or site quality. In this study, we investigated sex-ratio variation in the gynodioecious species Silene acaulis, which has nuclear-cytoplasmic sex determination. We determined whether the frequency of females in 10 sites on Niwot Ridge, in the Front Range of Colorado, was correlated with the quality of the site or the relative seed fitness of the two morphs. Furthermore, we determined whether the two morphs differed consistently in investment in flowers, ovules, seeds and fruits. We found significant variation in sex ratio, site quality and relative seed fitness of the two morphs across sites. Although ovule number was greater in flowers on females, seed number per fruit did not vary in a consistent manner between morphs. The morphs differed consistently only in their propensity to produce fruit, with hermaphrodites exhibiting highly variable, and relatively low, fruit set compared to females. Female frequency was not significantly correlated with site quality. However, the relative seed fitness of the morphs was significantly correlated with site quality and the frequency of females. These results suggest that ecological factors do play a role in determining female frequency in S. acaulis and, consequently, can impact breeding-system evolution in this long-lived species

    Immune or genetic-mediated disruption of CASPR2 causes pain hypersensitivity due to enhanced primary afferent excitability

    Get PDF
    Human autoantibodies to contactin-associated protein-like 2 (CASPR2) are often associated with neuropathic pain, and CASPR2 mutations have been linked to autism spectrum disorders, in which sensory dysfunction is increasingly recognized. Human CASPR2 autoantibodies, when injected into mice, were peripherally restricted and resulted in mechanical pain-related hypersensitivity in the absence of neural injury. We therefore investigated the mechanism by which CASPR2 modulates nociceptive function. Mice lacking CASPR2 (Cntnap2 ) demonstrated enhanced pain-related hypersensitivity to noxious mechanical stimuli, heat, and algogens. Both primary afferent excitability and subsequent nociceptive transmission within the dorsal horn were increased in Cntnap2 mice. Either immune or genetic-mediated ablation of CASPR2 enhanced the excitability of DRG neurons in a cell-autonomous fashion through regulation of Kv1 channel expression at the soma membrane. This is the first example of passive transfer of an autoimmune peripheral neuropathic pain disorder and demonstrates that CASPR2 has a key role in regulating cell-intrinsic dorsal root ganglion (DRG) neuron excitability

    Crossbow Volume 1

    Get PDF
    Student Integrated ProjectIncludes supplementary materialDistributing naval combat power into many small ships and unmanned air vehicles that capitalize on emerging technology offers a transformational way to think about naval combat in the littorals in the 2020 time frame. Project CROSSBOW is an engineered systems of systems that proposes to use such distributed forces to provide forward presence to gain and maiantain access, to provide sea control, and to project combat power in the littoral regions of the world. Project CROSSBOW is the result of a yearlong, campus-wide, integrated research systems engineering effort involving 40 student researchers and 15 supervising faculty members. This report (Volume I) summarizes the CROSSBOW project. It catalogs the major features of each of the components, and includes by reference a separate volume for each of the major systems (ships, aircraft, and logistics). It also prresents the results of the mission and campaign analysis that informed the trade-offs between these components. It describes certain functions of CROSSBOW in detail through specialized supporting studies. The student work presented here is technologically feasible, integrated and imaginative. The student project cannot by itself provide definitive designs or analyses covering such a broad topic. It does strongly suggest that the underlying concepts have merit and deserve further serious study by the Navy as it transforms itself

    Complementary genetic and genomic approaches help characterize the linkage group I seed protein QTL in soybean

    Get PDF
    Background: The nutritional and economic value of many crops is effectively a function of seed protein and oil content. Insight into the genetic and molecular control mechanisms involved in the deposition of these constituents in the developing seed is needed to guide crop improvement. A quantitative trait locus (QTL) on Linkage Group I (LG I) of soybean (Glycine max (L.) Merrill) has a striking effect on seed protein content. Results: A soybean near-isogenic line (NIL) pair contrasting in seed protein and differing in an introgressed genomic segment containing the LG I protein QTL was used as a resource to demarcate the QTL region and to study variation in transcript abundance in developing seed. The LG I QTL region was delineated to less than 8.4 Mbp of genomic sequence on chromosome 20. Using Affymetrix® Soy GeneChip and high-throughput Illumina® whole transcriptome sequencing platforms, 13 genes displaying significant seed transcript accumulation differences between NILs were identified that mapped to the 8.4 Mbp LG I protein QTL region. Conclusions: This study identifies gene candidates at the LG I protein QTL for potential involvement in the regulation of protein content in the soybean seed. The results demonstrate the power of complementary approaches to characterize contrasting NILs and provide genome-wide transcriptome insight towards understanding seed biology and the soybean genome

    Altered spring phenology of North American freshwater turtles and the importance of representative populations

    Get PDF
    Globally, populations of diverse taxa have altered phenology in response to climate change. However, most research has focused on a single population of a given taxon, which may be unrepresentative for comparative analyses, and few long-term studies of phenology in ectothermic amniotes have been published. We test for climate- altered phenology using long-term studies (10–36 years) of nesting behavior in 14 populations representing six genera of freshwater turtles (Chelydra, Chrysemys, Kinosternon, Malaclemys, Sternotherus, and Trachemys). Nesting season initiation oc- curs earlier in more recent years, with 11 of the populations advancing phenology. The onset of nesting for nearly all populations correlated well with temperatures during the month preceding nesting. Still, certain populations of some species have not advanced phenology as might be expected from global patterns of climate change. This collection of findings suggests a proximate link between local climate and reproduction that is potentially caused by variation in spring emergence from hibernation, ability to process food, and thermoregulatory opportunities prior to nesting. However, even though all species had populations with at least some evi- dence of phenological advancement, geographic variation in phenology within and among turtle species underscores the critical importance of representative data for accurate comprehensive assessments of the biotic impacts of climate change

    Altered spring phenology of North American freshwater turtles and the importance of representative populations

    Get PDF
    Globally, populations of diverse taxa have altered phenology in response to climate change. However, most research has focused on a single population of a given taxon, which may be unrepresentative for comparative analyses, and few long‐term studies of phenology in ectothermic amniotes have been published. We test for climate‐altered phenology using long‐term studies (10–36 years) of nesting behavior in 14 populations representing six genera of freshwater turtles (Chelydra, Chrysemys, Kinosternon,Malaclemys, Sternotherus, and Trachemys). Nesting season initiation occurs earlier in more recent years, with 11 of the populations advancing phenology. The onset of nesting for nearly all populations correlated well with temperatures during the month preceding nesting. Still, certain populations of some species have not advanced phenology as might be expected from global patterns of climate change. This collection of findings suggests a proximate link between local climate and reproduction that is potentially caused by variation in spring emergence from hibernation, ability to process food, and thermoregulatory opportunities prior to nesting. However, even though all species had populations with at least some evidence of phenological advancement, geographic variation in phenology within and among turtle species underscores the critical importance of representative data for accurate comprehensive assessments of the biotic impacts of climate change
    corecore